如何使用jMeter对某个OData服务进行高并发性能测试

For project reason I have to measure the performance of OData service being accessed parallelly. And I plan to use the open source tool JMeter to generate a huge number of request in parallel and measure the average response time. Since I am a beginner for JMeter, I write down what I have learned into this blog. I will continue to explorer the advanced feature of JMeter in my daily work.

我们公司某团队开发了一个OData服务,现在我接到任务,要测试这个服务在高并发访问场景下的性能指标,比如5万个请求同时到来后,每个请求的平均响应时间,因此我选择了jMeter这个好用的工具来模拟高并发请求。

  1. Download JMeter from its official website:

http://jmeter.apache.org/

Go to the installation folder, add the following text in file \bin\user.properties:
httpclient4.retrycount=1
hc.parameters.file=hc.parameters

  1. Create a new test plan for example Customer_Query_OData_test, and right click on it and create a thread group from context menu.
    创建一个新的测试plan,基于其再创建一个线程组:

Below configuration means I would like to generate three request in parallel via three threads, each thread is executed only once. And there is no delay during the spawn of each threads ( Ramp-Up Period = 0 )

下列设置意思是我想创建三个并发请求,每个请求通过一个线程实现,每个线程仅仅执行一次。每个线程派生后的延时是0秒,意思是主线程同时创建三个线程。

创建一个新的HTTP请求,维护下列设置:

Create a new Http Request and maintain the following settings:
(1) Protocol: https
(2) Server name:
(3) Http request method: GET
(4) Http path: /sap/c4c/odata/v1/c4codata/AccountCollection/ - 这就是OData服务的相对路径了
(5) Use KeepAlive: do NOT select this checkbox - 记得这个勾别打上

In Parameter tab, maintain query option $search with value ‘Wang’

这个意思就是每个并发请求同时发起OData查询,参数为我的名字Wang

Switch to Advanced tab, choose “HttpClient4” from drop down list for Implementation, and maintain proxy server name and port number.

如果有代理的话,在下图位置维护代理服务器信息。

  1. Create a new HTTP Header Manager and specify the basic authentication header field and value.

在HTTP Header Manager里维护访问这个Odata服务的credential。因为我们开发的OData服务支持Basic Authentication这种认真方式,所以我在此处的HTTP header字段里维护Authentication信息。

  1. Create a listener for the test plan. In my test I simply choose the most simple one: View Results in Table.

创建listener,主要用途当然是显示测试结果了。我使用的是jMeter自带的Listener,Table类型的,以表格形式显示高并发请求和响应的各项指标。

Once done, start the test:

一切就绪,点击这个绿色的三角形开始测试:

After the test is finished, double click on View Result Listener and the response time for each request and the average response time is displayed there:

测试完毕后,双击我们之前创建的Table Result Listener,我这三个并发请求的性能指标就显示出来了。可以看到三个请求中,最快的请求用了5.1秒,最慢的6.9秒

当然,jMeter也支持命令行方式使用:
Or you can use command line to achieve the same:
-n: use non-GUI mode
-t: specify which test plan you want to run
-l: specify the path of output result file

为了检验jMeter采集的数据是否正确可靠,我还花时间写了一个Java程序,用JDK自带的线程池产生并发请求,测试的结果和jMeter是一致的。
And I have written a simple Java application to generate parallel request via multiple thread and the result measured in Java program is consistent with the one got from JMeter.
The source code could be found from my github:

我的Java程序放在我的github上:
https://github.com/i042416/JavaTwoPlusTwoEquals5/tree/master/src/odata

How to generate random query for each thread in JMeter

到目前为止,我的三个并发请求进行搜索的参数都是硬编码的Wang,这个和实际场景不太符合。有没有办法生成一些随机的搜索字符串,这样更贴近真实使用场景呢?

Suppose we would like each thread in JMeter to generate different customer query via OData with the format JerryTestCustomer_<1~100>, we can simply create a new user parameter:

当然有办法:右键菜单,Add->Pre Processors(预处理器)->User Parameters:

参数名Parameter name,取为uuid
参数值Parameter value: use JMeter predefined function __Random to generate random number.
使用jMeter自带的随机数生成函数__Random。

因此最后参数uuid的值为${__Random(1,100)},意思是生成1到100内的随机正整数

and in http request, just specify reference to this variable via ${uuid}:

在http请求里,用固定的前缀JerryTestCustomer_加上随机参数,以此来构造随机搜索字符串:

So that in the end each thread will issue different query to OData service end point.

通过Table Result listener,能观察到这次确实每个请求发起的搜索都使用了不同的字符串了。

希望这篇文章介绍的jMeter使用技巧对大家工作有所帮助。

要获取更多Jerry的原创文章,请关注公众号"汪子熙":

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值